

LE TS

Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia

Amaury Dehecq^{1,2}, Noel Gourmelen³, Alex Gardner¹, Fanny, Brun⁴, Dan Goldberg³, Pete Nienow³, Etienne Berthier⁵, Christian Vincent⁴, Patrick Wagnon⁴, Emmanuel Trouvé² ¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA ²LISTIC, USMB, FR³School of Geosciences, University of Edinburgh, UK ⁴IGE, Université Grenoble Alpes, FR⁵LEGOS, Université de Toulouse, FR

Results 0000000

High Mountain Asia - The third pole

- Glaciers cover 118.200 km² (31 mm SLE) [Huss & Farinotti 2012]
- Water resources for >1.4 billion people [Immerzeel 2010]

Water stress 2015 [Pritchard 2017]

Introduction	Velocities	Results	Conclusions
0•	00000	000000	i i i i i i i i i i i i i i i i i i i

High Mountain Asia - Glacier evolution

Elevation change trends 2000-2016 [Brun et al., 2017]

Introduction	Velocities	Results	Conclusions
00	0000	000000	

Objectives

What is the dynamic response of glaciers to the climate forcing?

 \Rightarrow Generate ice flow velocities from feature-tracking at the scale of the High Mountain Asia from optical satellite images (Landsat). \Rightarrow Investigate link between mass changes and ice flow.

Introduction	Velocities	Results	Conclusions
00	0000	000000	

Automated observation of ice flow velocities

Inputs

- Landsat 8 panchromatic (15 m) 2013-
- Landsat 7 panchromatic, incl. SLC-off (15 m) 1999-
- Landsat 4/5 PCA of B1, B2, B3, B4 (30 m) 1985-2010

Overview

- JPL autonomous Repeat Image Feature Tracking [Gardner et al., 2017]
- Normalized-cross correlation
- Pre-processing : Wallis filter, Fourier filtering (along-track banding)
- Automatically detect variable search distance
- Progressive template size [16, 32, 64, or 128 pix]

16 days to \sim 1 year pairs \Rightarrow >2 million image pairs over HMA !

Introduction	Velocities	Results	Conclusions
	00000		

Annual time series - 1985-2017 - Karakoram

Introduction	Velocities	Results	Conclusions
	00000		

How to quantify a change in velocity?

Introduction	Velocities	Results	Conclusions
	00000		

How to quantify a change in velocity? - Off ice

Velocity magnitude difference

00 000 00 0000000	

How to quantify a change in velocity? - Off ice

Velocity anomaly

Results

ESA Sentinel 2 image acquired on 14/01/2016 over Nepal and Tibet

- Most glaciers slowing down, concomitant with ice thinning
- Break in trends in the western regions

Introduction	Velocities	Results	Conclusions
00	00000	00000	

Velocity trend 2000-2016

1. Calculate a linear trend in velocity in each 240m x 240m pixel

Introduction	Velocities	Results	Conclusions	
00	00000	000000		

Regional trends 2000-2016

 \Rightarrow Velocity trends mirror elevation change

Introduction	Velocities	Results	Conclusions
		0000000	

Regional trends 2000-2016

 \Rightarrow Velocity trends mirror elevation change

Can the velocity change be explained by a change in glacier geometry (thickness/slope) only?

Mera glacier - Nepal

Inputs :

- Modelled bed topography [Huss & Farinotti 2012]
- Observed elevation changes [Brun et al., 2017]

Introduction	Velocities	Results	Conclusions
		000000	

Relationship thickness vs velocity change

2. We compare regional averages of driving stress change vs velocity change

 \Rightarrow The change in driving stress (thickness + slope) explains 94% of the inter-regional variability in velocity change !

13/14

Introduction	Velocities	Results	Conclusions
00	00000	000000	

Conclusions

- Main trend is slow-down of glaciers over 2000-2017.
- Velocity change mirrors thickness change \Rightarrow Climate-driven
- Velocity change largely explained by changes in driving stress, and primarily thickness :
 - \Rightarrow Changes in basal conditions do not matter at regional/decadal scales
 - \Rightarrow Changes in glacier flow can be modelled from surface observations only

Methodological aspects : be aware of biases !

- Use of "velocity anomaly" recommended when SNR low
- Biases exist between velocity obtained from different Landsat missions

Thank you for your attention !

ESA Sentinel 2 image acquired on 14/01/2016 over Mount Everest

Introduction	Velocities	Results	Conclusions
00	00000	0000000	

Velocity time series - Sensor bias

Mean velocity 1985-2017

Introduction	Velocities	Results	Conclusions

Velocity time series - Sensor bias

Difference L8 - L7 velocities over 2013-2017

Introduction	Velocities	Results	Conclusions

Velocity time series - Sensor bias

Difference L7 - L5 velocities over 1999-2010

Introduction	Velocities	Results	Conclusions

Velocity time series - 1985-2017

Before correction

Introduction	Velocities	Results	Conclusions
00	00000	000000	

Velocity time series - 1985-2017

After correction

