Combined effect of precipitation and earthquakes on the kinematic of a slow moving landslide

The case of the Maca landslide, Colca Valley, Peru

Why studying slow moving landslides ?

- displacement of the ground due to the gravity
- One of the major threat in mountainous area
- Kinematic driven by different forcings
 - rapid landslides (m/s)
 - •
- slow moving landslides (m/an)

Landslide forcing

Human activities

problematic

• To better understand the different mechanisms impacting landslide kinematics in active seismic region where both earthquake and rainfall can combine

Site of study

- Colca river contributing to erosion of lacustrine deposits
- Precipitation follows a season cycle
- intense seismic activity

Bontemps et al. 2018

The Maca Landslide monitoring

Wegener 2018

Zerathe et al., 2016

Weaver (Phys. Rev. Lett. 2001; Science 2005)

Earthquake recorded between 2016 and 2017

major earthquakes

Effective precipitation recorded between 2016 and 2017

GPS measurements

Combined effect of precipitation and earthquake observable with GPS

Small magnitude earthquake impact (MI<4)

• Keefer (1984) and Keefer and Wilson (1989).

Conclusions

- We can see a combination of earthquake and precipitation from GPS time-series
- acceleration of the landslide following low magnitude earthquakes (MI<4)
- One possible mechanism at the origin is the damage of the soil that ease the way of precipitation into the ground

Thank you for your attention