ACCOUNTING FOR UNCERTAIN FAULT GEOMETRY IN EARTHQUAKE SOURCE INVERSIONS

Théa Ragon¹, Anthony Sladen¹, Mark Simons²

¹ Université Côte d'Azur, CNRS, Géoazur, ² Seismological Laboratory, CalTech, USA

What is the impact of this complexity on our models?

Yet the Earth is also poorly known... And thus often simplified to an uncertain approximation

Uncertain

For large earthquakes (Mw>8):

Uncertainties in the forward model

Up to 1m

observational errors

σ²~10⁻³ to 10⁻⁶m

Ragon et al. 2018

Yet only observational errors are usually accounted for

Account for uncertainties in the fault geometry through a sensibility analysis

What is the impact of a small variation of the geometry on static measurements?

after Duputel et al. 2014 Ragon et al. 2018

 $\mathbf{K}_{\text{dip}} = \frac{\partial G_d}{\partial d}$ $\mathbf{C}_{\text{p}} = \mathbf{K}_{\text{dip}} \cdot \mathbf{C}_{\text{dip}} \cdot \mathbf{K}_{\text{dip}}^T$

 $\mathbf{C}_{\mathrm{d}} \rightarrow \mathbf{C}_{\mathrm{d}} + \mathbf{C}_{\mathrm{p}}$

Updated misfit covariance matrix → can be used in any inversion method

Application to a toy model

Can we infer the target slip if assuming a wrong fault geometry?

Application to a toy model

that our fault geometry is certain sur 1 km depth Average parameter -(mean of the distribution of most probable parameters) down-dip end (20 km depth) Ragon et al. 2018 **Offset to target model** (= 1 m)

If we assume

Can we infer the target slip if assuming a wrong fault geometry?

50 cm

7

Application to a toy model

If we If we assume that our fault account for uncertainties geometry is certain $\sigma=5^{\circ}$ in dip surface 1 km depth Average parameter — (mean of the distribution of most probable parameters) down-dip end (20 km depth) Ragon et al. 2018 **Offset to target model** (= 1 m) 0 cm 50 cm

Can we infer the target slip if assuming a wrong fault geometry?

8

Accounting for epistemic uncertainties = Allow for a larger misfit between observations and predictions = Predictions are not over-confident in a wrong forward model

Application to the Mw6.2 Amatrice earthquake, 2016, Central Italy

Variability of fault geometries assumed for the Amatrice earthquake, from Lavecchia et al. 2016; Tinti et al. 2016; Huang et al. 2017; Liu et al. 2017; Chiaraluce et al. 2017; Cheloni et al. 2017.

Static estimation of co-seismic slip from **4 interferograms and 28 GPS stations** Usual optimization: **1 model**

ACCOUNTING FOR UNCERTAINTIES

σ =5° in dip, 2km in position

Uncertainty in fault geometry impacts earthquake slip estimates

And may bias

shallow slip estimates tsunami hazard assessment

Particularly for events well observed in near field

Ragon, Sladen, Simons – *GJI* – Accounting for uncertain fault geometry in earthquake source inversions – 1 (2018) ragon@geoazur.unice.fr

Synthetic tests: wrong Earth properties and Fault geometry

Ragon et al. *in prep*

Accounting for uncertainties **in fault geometry**

Accounting for uncertainties in fault geometry and Earth properties

Uncertainty in fault geometry in the forward model impacts earthquake slip estimates

And we should account for it!

Ragon, Sladen, Simons – *GJI* Accounting for uncertain fault geometry in earthquake source inversions – 1 (2018) Accounting for uncertain fault geometry in earthquake source inversions – 2 (to be submitted September 2018)

> *Contact* ragon@geoazur.unice.fr *You can find the slides at* ragonthea.wordpress.com

	Fault geometry A, no C_p	Fault geometry B, no C_p	Fault geometry B, C_p
GPS	0.318	0.279	0.376
ALOS ascending	2.67	1.73	1.91
ALOS descending	3.48	2.62	3.33
Sentinel ascending	5.02	4.16	5.54
Sentinel descending	2.30	2.99	4.13

TABLE S2 – Residuals between observations and predictions of inferred models for fault geometries A and B, accounting or not for C_p .

FIGURE S10 – Comparison of the residuals between inversion accounting or not for C_p and with fault geometry B as reference. The residuals corresponding to dip-slip amplitudes of average models are presented in terms of percentage of slip (left) or as absolute values (right).