Pore pressure control on the thickness of the seismogenetic crust in continental extensional regimes:

insights from recent earthquake and swarm sequences in the Apennines

Nicola D’Agostino
INGV, Roma
Continental extensional regime

• Transition from localised frictional behaviour on faults to creep processes in more distributed ductile shear zones (Scholtz, 1988; Sibson, 1982) is temperature-controlled
Continental extensional regime

• Transition from localised frictional behaviour on faults to creep processes in more distributed ductile shear zones (Scholtz, 1988; Sibson, 1982) is temperature-controlled

• Low-dipping alignments of seismicity

Gulf of Corinth

Alto Tiberina Valley

Duverger et al., GJI 2018

Valoroso et al., JGR 2017
Plan of the talk

• Seismic/Aseismic slip from Amatrice-Norcia sequence (2016-2017) and Gubbio swarm (2013-2014)

• Role of distinct stratigraphic horizons and permeability boundaries to control depth of frictional localized slip (seismic/aseismic)

• Modelling of interseismic deformation (relation with seismicity distribution, fluid overpressures)
2013-2014 Gubbio swarm

- Time evolution of displacement = ramp function
- t_1, t_2 simultaneously inverted from all the GPS stations
2013-2014 Gubbio swarm

- Transient deformation modelled with two dislocations (read beachballs) aligned with seismicity
- Released seismic/geodetic moment ~25%
- Slipping faults confined above basement/evaporites boundary
Fluid overpressures in the Northern Apennines

- Good coverage of seismic reflection lines and deep boreholes
- Large deep CO₂ release (Chiodini et al., 2004)
- Basement (phyllites)/evaporites boundary as a regionally-important permeability boundary?
- High overpressure controlled by basement phylites?

- At borehole’s bottom (4800 m) CO₂ $P_f = 99$ MPa ($\lambda = 0.85$)
- Within evaporite beneath basement thrust sheet

- Bottom of borehole (~5500 m)
- Hydrostatic pore pressure

Trippetta et al., 2013

Diagram showing strain rate and geologic layers.
Gubbio: interseismic modelling

- Buried tensile dislocations (depth 4 km)
- Geometry: fixed below slipping faults; amplitude: adjusted
- Good fit to GPS velocities
- High differential stress above the tip of the tensile dislocation
- Low differential stress in the basement
2016-2017 Amatrice-Norcia sequence

- Main shocks:
 24 August Mw 6.1
 26 October Mw 5.9
 30 October Mw 6.5
- > 90k relocated aftershocks (iside.rm.ingv.it)
- Shallow dipping low-magnitude alignment beneath coseismic-all-active faults

Vuan et al., 2017
2016-2017 Amatrice-Norcia sequence

Norcia eq

Mw 6.5

Evaporites

Basement (phyllites)

Porreca et al., 2018
Amatrice-Norcia interseismic

Summary

Tensile dislocation forward model of interseismic deformation controlled by the geometry of seismically/aseismically slipping faults

Good first-order fit of GPS velocities

High differential stress, hydrostatic pore pressure above the tip of tensile dislocation

Low differential stress, \(\sim\) lithostatic pore pressure below the tip of the tensile dislocation
Failure mode diagrams

Define different failure modes in $\lambda_v - \sigma$ space

$\lambda_v = P_f / \sigma_v$

- Extensional failure
- Hybrid failure
- Shear failure

(Sibson, 1988; Cox, 2010)
Failure mode diagrams
(Sibson, 1988; Cox, 2010)

Extensional failure by pore pressure increase

Compressional shear failure by differential stress increase
A possible scenario?

Evaporites (depth ~4 km):
- Hydrostatic \(\lambda \), high differential stresses
- Increase of \((\sigma_1-\sigma_3) \) or \(P_f \) leads to SF (seismic/aseismic)

Basement (depth ~8 km):
- High \(\lambda \) (0.85), low differential stresses
- Small increase of \(P_f \) leads to EF
- Volumetric deformation by fracturing/veining
A possible scenario?

Evaporites (depth ~4 km):
- Hydrostatic λ, high differential stresses
- Increase of $(\sigma_1-\sigma_3)$ or P_f leads to SF (seismic/aseismic)

Basement (depth ~8 km):
- High λ (0.85), low differential stresses
- Small increase of P_f leads to EF

Lambotte et al., 2014

Diagram:
- A graph showing stress vs. strain with critical points indicating SF and EF conditions.
- A map highlighting the Gulf of Corinth and model parameters such as viscosity and slip rate.
Conclusions

• High pore pressure horizons limit the depth of frictional faulting (seismic/aseismic) ?
• Similar settings in Northern Apennines, Gulf of Corinth
• Volumetric deformation, significant fracturing/veining. Geological analogues ?