Pore pressure control on the thickness of the seismogenetic crust in continental extensional regimes:

insights from recent earthquake and swarm sequences in the Apennines

Nicola D'Agostino INGV, Roma

Continental extensional regime

 Transition from localised frictional behaviour on faults to creep processes in more distributed ductile shear zones (Scholtz, 1988; Sibson, 1982) is temperature-controlled

Continental extensional regime

- Transition from localised frictional behaviour on faults to creep processes in more distributed ductile shear zones (Scholtz, 1988; Sibson, 1982) is temperature-controlled
- Low-dipping alignments of seismicity

Gulf of Corinth

Alto Tiberina Valley

Valoroso et al., JGR 2017

Plan of the talk

- Seismic/Aseismic slip from Amatrice-Norcia sequence (2016-2017) and Gubbio swarm (2013-2014)
- Role of distinct stratigraphic horizons and permeability boundaries to control depth of frictional localized slip (seismic/aseismic)
- Modelling of interseismic deformation (relation with seismicity distribution, fluid overpressures)

2013-2014 Gubbio swarm

2013-2014 Gubbio swarm

- Transient deformation modelled with two dislocations (read beachballs) aligned with seismicity
- Released seismic/geodetic moment ~25%
- Slipping faults confined above basement/evaporites boundary

Fluid overpressures in the Northern Apennines

Gubbio: interseismic modelling

2016-2017 Amatrice-Norcia sequence

2016-2017 Amatrice-Norcia sequence

Porreca et al., 2018

Amatrice-Norcia interseismic

Failure mode diagrams Define different failure modes in λ_{ν} - σ space $\lambda_v = P_f / \sigma_v$

extensional failure hybrid failure shear failure

(Sibson, 1988; Cox, 2010)

Failure mode diagrams

(Sibson, 1988; Cox, 2010)

A possible scenario ?

Evaporites (depth ~4 km):

- Hydrostatic λ , high differential stresses
- Increase of (σ₁-σ₃) or P_f leads to SF (seismic/aseismic)

Basement (depth ~8 km):

- High λ (0.85), low differential stresses
- Small increase of **P**_f leads to **EF**
- Volumetric deformation by fracturing/veining

Conclusions

- High pore pressure horizons limit the depth of frictional faulting (seismic/aseismic) ?
- Similar settings in Northern Apennines, Gulf of Corinth
- Volumetric deformation, significant fracturing/veining. Geological analogues ?