

Exploiting Synthetic Aperture Radar to map and observe landslides

David Bekaert, Radar Science and Engineering Section

@SARscience

P. Agram, H. Fattahi (JPL)

D. Kirschbaum (NASA GSFC), N. Rosser and J. Williams (Durham University)

Landslides impacting road-corridors

- Thousands of people are impacted each year by landslides
- Poorly designed roads are more prone to landslides
- Local economies are highly vulnerable to inaccessible road networks

Improved understanding on causes & correlation with physical processes requires dense spatio-temporal landslide catalogues

Landslide mapping study areas

Trishuli highway in Nepal

California Pacific Highway-1

Detection of Landslides using Synthetic Aperture Radar

1. SAR change detection (amplitude/intensity), InSAR (coherence) Example: Nepal • SAR resolution (+ coherence estimation window) <-> landslide spatial extent • Thresholding • Separate false positives (scattering change e.g. precip, snow, EQ etc.) • Critical failure (surface no longer preserved)	
 2. Pixel/feature offset tracking Deeds preserved surface features SAR resolution and correlation window <-> landslide spatial extent Fast moving slides (rates > 10th of SAR pixel size) 	
3. Time-series InSAR	Examples: Nepal and USA
 Only sensitive to Line of Sight motion SAR resolution <-> landslide spatial extent Slow moving slides (i.e. non-aliased rate) 	 All sensitive to: Geometry (shadow and layover) Noise (snow, vegetation, precip., atmos.)

1. Change Detection InSAR

Critical failure (surface no longer preserved)

Detection of Landslides using Synthetic Aperture Radar

- 1. SAR change detection (amplitude/intensity), InSAR (coherence)
 - SAR resolution (+ coherence estimation window) <-> landslide spatial extent
 - Thresholding
 - Separate false positives (scattering change e.g. precip, snow, EQ etc.)
 - Critical failure (surface no longer preserved)

2. Pixel/feature offset tracking

- Needs preserved surface features
- SAR resolution and correlation window <-> landslide spatial extent
- Fast moving slides (rates > 10th of SAR pixel size)

3. Time-series InSAR

- Only sensitive to Line of Sight motion
- SAR resolution <-> landslide spatial extent
- Slow moving slides (i.e. non-aliased rate)

Examples: Nepal and USA

All sensitive to:

- Geometry (shadow and layover)
- Noise (snow, vegetation, precip., atmos.)

Example: USA

Example: Nepal

2. Feature/pixel offset tracking Fast moving slides Needs preserved surface features Requires motion >10% of pixel size

CA Mudcreek landslide (20 May 2017)

PRE (2017-05-16)

POST (2017-05-31)

Data accessible for free under Planet's Open California Initiative

Pixel offsets

Y-direction

3m

0

X-direction

Correlation

0

- Landslide completely decorrelated after failure
- Correlation of 0.7-0.8 at least needed for reliable estimates
- Orthorectification artifacts also visible in the offset estimates •

Detection of Landslides using Synthetic Aperture Radar

1. SAR change detection (amplitude/intensity), InSAR (coherence) SAR resolution (+ coherence estimation window) <-> landslide spatial extent Thresholding Separate false positives (scattering change e.g. precip, snow, EQ etc.) - Critical failure (surface no longer preserved)

2. *Pixel/feature offset tracking*

- Needs preserved surface features
- SAR resolution and correlation window <-> landslide spatial extent
- Fast moving slides (rates > 10th of SAR pixel size)

3. Time-series InSAR

- Only sensitive to Line of Sight motion
- SAR resolution <-> landslide spatial extent
- Slow moving slides (i.e. non-aliased rate)

All sensitive to:

- Geometry (shadow and layover)
- Noise (snow, vegetation, precip., atmos.) ۲

Examples: Nepal and USA

Example: USA

Example: Nepal

Regional rate maps are difficult to interpret

3. Time-series InSAR

Techniques include: PSI, PS, SBAS, SqueeSAR etc.

- Radar geometry leading to pixel distortion
 - Layover and shadowing effects

- Atmospheric noise
 - Long wavelength spatially varying (>20km)
 - Short spatial wavelength turbulent (<2km)
 - Topography correlated (local)
 - Noise more apparent away from InSAR reference
- Tectonic deformation
 - Interseismic, Coseismic, Postseismic, Afterslip
- Anthropogenic deformation
- DEM errors introduced in processing

How to handle Radar Geometry?

Mask out pixels that have radar distortion:

- Shadowing (Feature that does not get illuminated by the radar)
- Lay-over (Top of a feature is received before the base of the feature)

Mask out pixels on flat terrain & slopes insensitive to the radar

- Remove pixels for which $| \theta_{look} - \theta_{local} | < 5^{\circ}$

How to distinct noise sources from landslide?

Local double differences cancels out longer wavelength noise signals -> DETECTOR

CA Sentinel-1 InSAR time-series

Sentinel-1 available for free under Copernicus program

Summary

- SAR data can be used in a variety of ways to map landslides
- Detection success rate for SAR strongly related to:
 - Sensor resolution
 - Landslide orientation vs satellite acquisition geometry
 - Scattering changed from snow, precip, vegetation
- There is not a one-fit all SAR technique towards landslide mapping
 - Fast moving landslides
 - Slow moving landslides
 - Critical failure landslides
- Time-series InSAR capable of mapping slowly moving slides
 - Local detector successfully applied on regional processing to identity slowly moving landslide area's from superimposed noise sources

