

GACOS-Assisted InSAR Time Series Technique

Zhenhong Li, Chen Yu; Nigel Penna

COMET, School of Engineering, Newcastle University, UK

(Emails: Zhenhong.Li@newcastle.ac.uk)

Basic Structure of the Atmosphere

Troposphere:

- Contains 80% of air mass
- Contains 99% of water vapour
- > Air temperature decreases with altitude
- ~12km thick on average
 - ~16 km in the Tropics
 - ~9km in the Polar Regions
- Not dispersive (up to 30 GHz)

We focus on Troposphere today...

InSAR – atmospheric effects

 Spatiotemporal variations in Troposphere represent one of the major limitations of repeat-pass InSAR

- 1 mm of PWV => ~6.2 mm of ZPD
- ZPDDM: Zenith Path Delay Difference Map

N.B. Strong gradient in Figure (a)

Space-based water vapour measurements

- Limitations: Sensitive to the presence of clouds; Available in the daytime only; Time differences between radar and PWV data
- Ground-based measurements
 - Limitations: Coverage + Density + Distribution
- Numerical Weather Models (NWM)
 - Global/regional/local coverage
 - High-resolution (relatively)
 - Non-continuous but regular
 - Insensitive to the presence of clouds

Key Questions

- How to generate high resolution (e.g. 90m) and precise (e.g. 1-2 mm) water vapour maps from sparse observations (e.g. GPS derived PWVs)?
- 2. Which numerical weather model can be used to generate high resolution (e.g. 90m) and precise (e.g. 1-2 mm) water vapour maps?
- 3. Is it feasible to integrate multiple sources with different resolutions to produce high resolution (e.g. 90m) and precise (e.g. 1-2 mm) water vapour maps?

N.B. 1 mm of PWV => 6.2 mm of Phase Delay

Basic equations

Tropospheric delays can be calculated as follows:

$$\Delta S = 10^{-6} \int_{S} N \cdot ds$$

where *N* is **refractivity**: $N = (n-1) \cdot 10^{-6}$

The refractivity of the troposphere is given by

Basic equations

The refractivity of the troposphere is COMMONLY written as

$$N = N_h + N_w$$

Assuming a spherically symmetric atmosphere, the zenith tropospheric delay (ZTD) can be expressed as:

ZTD = ZHD + ZWC

- ZHD: Zenith Hydrostatic Delay
- > ZWD: Zenith Wet Delay

Atmospheric Correction Model: Iterative Tropospheric Decomposition Model (ITDM)

@AGUPUBLICATIONS

JGR

error

Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE

10.1002/2016JD025753

Key Points:

 An iterative tropospheric decomposition model for zero differenced ZTD interpolation
 Generation of high-resolution

Generation of real-time mode high-resolution water vapor fields from GPS observations

Chen Yu¹ 💿, Nigel T. Penna¹ 💿, and Zhenhong Li¹ 💿

¹School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK

Tropospheric delays include:

- Stratified: Topography-dependent component
- Turbulent: Topography-independent component resulting from turbulent processes

$$VL_{ij}^{k} = T(\mathbf{x}^{k}) + L_{0}e^{-\beta h^{k}} + \varepsilon$$

Turbulent Stratified Unmodelled

Newcastle University

Atmospheric Correction Model: Iterative Tropospheric Decomposition Model (ITDM)

- The turbulent and stratified components are modeled with IDW and exponential functions, respectively
- ITDM reduces the turbulence effects on the estimation of height scaling

Newcastle University

Atmospheric Correction Model: Iterative Tropospheric Decomposition Model (ITDM)

ITDM leads to 45–78% of noise reduction even with a sparse (~50-80 km station spacing) **GPS** network and/or with strong and non-random tropospheric turbulence.

(Yu et al., 2018, RSE)

Comparison between HRES ECMWF and ERA-Interim

	HRES-ECMWF	ERA-Interim
Horizontal	9~16 km	75 km
Resolution		
Vertical Resolution	137 levels	61 levels
Output frequency	00,06,12,18 UTC	00,06,12,18 UTC
Data availability	Near real-time	Delayed 3-4 months
Data access	Free with authorization	Free

Newcastle Integration of GPS and HRES-ECMWF

$$S = L_0 e^{-\beta h} \Rightarrow \begin{cases} S_m^G = L_0 e^{-\beta h_m} \\ S_n^E = L_0 e^{-\beta h_n} \end{cases}, \quad P_S = \begin{bmatrix} P_G & 0 \\ 0 & P_E \end{bmatrix}$$
$$T_u = \sum_{i=1}^n w_{ui} T(\mathbf{x}_i), \quad w_{ui} = \underbrace{p_i d_{ui}^{-2}}_{i=1} p_i d_{ui}^{-2}$$

- GPS and HRES-ECMWF are integrated with proper weighting to generate reliable ZTD correction maps.
- The relative weighting between GPS and HRES-ECMWF are controlled by the precision and station distribution of GPS.

(Yu et al., 2018, in press for JGR)

Newcastle GACOS: Generic Atmospheric University **Correction Online Service for InSAR**

- Operational in near real time
- Easy to implement
- Performance indicators

- hours);
- GNSS (soon to be released)
- 90m SRTM and ASTER GDEM

Launched in the 2017 Fringe Workshop on 6 Jun 2017

Case study: Central California

N.B. RMS difference (InSAR vs GPS): 2.43 cm -> 0.72 cm (Yu et al., 2018, in press for JGR)

Case studies: Northern Tibet/Nepal

Case study: Maoxian Landslide, China

The 24 June 2017 Maoxian (China) Landslide (Sentinel-1A 20170131-20170531)

8 km

Performance Matrix (Indicators)

- Cross RMS
- Correlation coefficients
- \circ ECMWF time difference
- Topography variation

Performance indicator: Cross RMS

 Model performance decreases whilst Cross RMS increases.

InSAR Time Series Analysis

- Parameters to be estimated:
- Displacement time series
- Mean velocity
- DEM error
- Orbital ramps + Atmospheric effects (Atmospheric Phase Screen, APS)

InSAR Time Series Analysis

Fundamental assumptions:

- > Deformation signals are correlated in time and in space ($\sqrt{}$)
- APS signals are correlated in space, but NOT in time (?)

Our solution:

- Apply GACOS correction for every interferogram
- Identify the dates with poor GACOS correction according to GACOS performance indicators
- Estimate APS for those dates using a sub-network approach (Li et al., 2009, IEEE TGRS)
- Perform standard time series inversion...

Sub-network for APS Estimation: Envisat over Bam

Descending track 120

•27 images: (2004.01–2006.12)
•25 dates: APS OK
•2 dates: APS to be estimated

•130 interferograms
•Small Perp baseline:
< 400 m
•Network inversion:
•109 cloud-free pairs (Li et al., 2009)

Sub-network for APS Estimation: Envisat over Bam

Perp baseline: < 400 m Red: 10 Single-PWVcorrected Infms Blue: 38 ZPDDMcorrected Infms

Date: 050503

(Li et al., 2009, IEEE TGRS)

Postseismic motion after the 2016 Kaikōura, New Zealand, earthquake

Co-seismic displacements

(lan J. Hamling et al. Science 2017)

Co- & Post-seismic displacements From GPS

New Zealand Post-seismic time series

Ascending 33 images (2016.11–2017.12) 550 interferograms Small Perp baseline:<200m 200 km by 200 km

Ascending 35 images (2016.11–2017.12) 559 interferograms Small Perp baseline:<200m 150 km by 100 km

S-1 Inteferograms with or without GACOS correction

GACOS Performance Indicator(s)

InSAR time series results

T52

T154

Cumulative Displacements

InSAR vs GPS displacements

RMS Difference

(a) 1.95 cm

(b) 1.65 cm

(c) 0.77 cm

(d) 0.72 cm

2D spectral analysis

Model 1: Best-fitting crustal fault model

(lan J. Hamling et al. Science 2017)

Model 2: Best-fitting slip model including an interface source

NB. Given the proximity of the event and the location of the southern end of the Hikurangi subduction zone, an interface was introduced in Model 2

(lan J. Hamling et al. Science 2017)

Best-fitting afterslip model

Best-fitting afterslip model

Observed Modeled Residual

Afterslip time series

GACOS is freely available for the InSAR research community (<u>http://ceg-research.ncl.ac.uk/v2/gacos/</u> Version 2 will be released in Oct 2018.

- The assumption on APS being uncorrelated in time does not hold.
- GACOS-assisted InSAR TS is demonstrated, and outperform other TS techniques.
- Our preliminary afterslip model suggests that the 2nd coseismic model including an interface source is preferred, i.e. *the subduction slab moved during the co-seismic period and continues to move afterwards*