Active geodynamics of the Hengchun Peninsula from UAS HR DTM, GPS and ALOS PS-InSAR time series (Southern Taiwan)

Benoît Deffontaines*,1,2, Kuo-Jen Chang†1,3, Johann Champenois2, Ya-Ru Hsu4, Samuel Magalhaes5, Gregory Serries5, Chyi-Tyi Lee1,6, and Gerardo Fortunato5

1D3E LIA N536 CNRS MOST France-Taiwan – Taiwan
2Université Paris-Est, IGN, ENSG, LaSTIG, LAREG, – UPEM - Université Paris-Est Marne-la-Vallée – 6-8 Avenue Blaise Pascal cité Descartes, Champs-Sur-Marne, 77454 Marne-La-Vallée Cedex 2 France, France
3National Taipei University of technology [Taipei] – 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan
4Academia Sinica – 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
5Alphageomega SAS – Alphageomega SAS – 62, rue du Cardinal Lemoine 75005 Paris, France
6National Central University [Taiwan] – Taoyuan 3200, Taiwan, Taiwan

Abstract

To locate, to characterize and to quantify active faults are major concern in Taiwan following so many major earthquakes (e.g.: Chichi earthquake of september 21st, 1999). As it is situated in between the Taiwan slate belt and the Metamorphic Central Range to the north, and the northern tip of the summit of the accretionary prism of the Manila subduction zone to the south, the Hengchun Peninsula is a key area to better understand the Taiwan geodynamics. It is tectonically active as it was struckked recently by a major earthquake (Dec. 26th, 2006, depth: 44km, M: 7.0). Despite field studies and due to the muddy turbiditic Mutan and Maanshan formations and the Kenting Mélanges which are all so bad microtectonic markers, the complexe Hengchun Peninsula remains still “misunderstood” in a geodynamic point of view.

It is needed to get a detailed ”bird’s eye view” to reach the whole set of the active deformation. Consequently, we settled an Unmanned Aircraft System (UAS) survey in order to get a High Resolution Digital Terrain Model (HR DTM) of that area (