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A single fault zone process for slow earthquakes?
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Slow slip in Cascadia

* 1 monthlong, M 6.5-6.9, about 1 per year
* Slip rates 107 —10° m/s,

100 to 1000 times plate rate

Arc volcano

Continental moho
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Peng and Gomberg, 2010

So which fault zone processes control
these slip rates?




What could limit slow slip slip rates?

A limit on frictional weakening _ .
from minimum asperity size Shear-induced fluid pressure drops,

via dilatancy or fracture
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Slip rate ( /S) Liu and Rubin, 2010; Segall et al, 2010;

. . . Moore and Piazolo, in review
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Hawthorne and Rubin, 2013

Lavier et al, 2013; Fagereng et al, 2014;
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Proposed mechanism Creates slow |Creates

earthquakes? |abundant
events?

Minimum asperity size

) . . . yes yes
Shibazaki and lio, 2003; Hawthorne and Rubin, 2013
Brittle and viscous deformation
Lavier et al, 2013; Fagereng et al, 2014; Behr et al, yes VES?
2018;
Shear-induced fluid pressure
changes Liuand Rubin, 2010; yes yes

Segall et al, 2010; Moore and Piazolo, in rev.
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Borehole strain-based observations of heterogeneity
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Proposed mechanism Creates slow |Predicts |Complexity

earthquakes? |abundant | on simple

events? faults?

Minimum asperity size

Shibazaki and lio, 2003; Hawthorne and Rubin, 2013 yes yes no
Brittle and viscous deformation
Lavier et al, 2013; Fagereng et al, 2014; Behr et al, yes yes? no?

2018;

Shear-induced fluid pressure

changes Liuand Rubin, 2010; yes yes no
Segall et al, 2010; Moore and Piazolo, in rev.

Models appear too stable to allow heterogeneity on simple faults
- Fault networks are complex
But how can we measure and assess the heterogeneity?
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A spectrum of slow earthquakes
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Could we reproduce this variability
with a collection of subevents?

Need to choose
e Number of events of each moment
* Relationship: moment ~ duration™
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ow would our geodetic moment rate
observations reflect subevents?
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Can estimate amplitude of moment rate
variability on a range of timescales.
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normalized moment rate variability (power)
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» Data decays as frequency

To match a frequency decay,
need m=1, consistent with the
proposed continuum scaling
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Slow slip and tremor: 1 continuum, 1 physical process?
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Which processes could
produce a continuum where
small events are faster?

After Ide et al, 2007; Gao et al, 2012



Proposed mechanism

dependent
slip rates?

Minimum asperity size

Shibazaki and lio, 2003; Hawthorne and Rubin, 2013 no
Brittle and viscous deformation via fault
Lavier et al, 2013; Fagereng et al, 2014; Behr et al, . o) . .
2018, slow and wide? viscosity
Shear-induced fluid pressure iz
changes Liu and Rubin, 2010; width

Segall et al, 2010; Moore and Piazolo, in rev.
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Slow earthquakes come in a range of
sizes and durations

Moment rate spectra are consistent
with a single continuum of slow
earthquakes

The continuum would

* exclude several physical processes

* could indicate size-dependent
shear zone properties



GPS-based observations of slow slip heterogeneity
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Proposed mechanism Creates slow |Predicts |Complexity |Size-

earthquakes? |abundant [onsimple |dependent
events? |faults? slip rates?

Minimum asperity size

Shibazaki and lio, 2003; Hawthorne and Rubin, 2013 yes yes no no
Brittle and viscous deformation , via fault
: : : es es NO: . .
;?)\ggr et al, 2013; Fagereng et al, 2014; Behr et al, Y Y viscosity
Shear-induced fluid pressure via fault
changes Liu and Rubin, 2010; Yes yes no width

Segall et al, 2010; Moore and Piazolo, in rev.
Frictional weakening and il

strengthening patches siarbeketal, yes no no? fraction
2012; Luo and Ampuero, 2017; Yabe et al, 2017

Size-limited weakening areas?

. . _ YesS NO NO Nno
Liu and Rice, 2007; Rubin, 2008; Skarbek et al, 2012

Fluid addition to viscous ves yes 27 27
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Slow earthquake complexity:
hours-long sub-ruptures
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Peng and Rubin, 2016

Rupture speeds 10 to 50 times
faster than main event



Option 1: Clusters of brittle failures

Whole slipping area: small brittle fraction = low slip rate
Upper half: moderate brittle fraction = moderate slip rate
Smaller clusters: higher brittle fraction = higher slip rate

Smallest clusters: highest brittle fraction 2 highest slip rate

Fagereng et al, 2014



Option 1: Clusters of brittle failures

brittle fraction
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—> Larger stress drops in smaller, faster events?



Option 1: Clusters of brittle failures

But we don’t infer high stress drops from
strain observations of hours-long RTRs,
even though slip rates are 5 times higher

Peng and Rubin, 2016
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Smaller shear zones have
lower viscosities?

tremor

slow slip

10° 1011 1013 10%°
viscosity (Pa s)




Option 2: Size-dependent fault properties

—

L ~L Smaller faults are narrower?
@ - Faster fluid diffusion?
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Slow slip and tremor in Cascadia

Slow slip: transient aseismic slip N
* 1 monthlong, M6.5-6.9
* Slip rates 107 = 10° m/s,

100 to 1000 times plate rate

Continental moho
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So which fault zone processes control
these slip rates?

F-Y
(=
L
I

L]

(=]
1
I

o]
(=]
1
i

-1 240

(=]
l

Tremor: many small but slow earthquakes

e Mostly 0.5 seconds long, M1-2.5

* Slip rates probably 10“#to 103 m/s

* 10 to 1000 times slower than most
seismic wave-limited earthquakes
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What about tremor’s characteristic durations?

Within in the tremor band, duration appears independent of moment
Bostock et al, 2015

< Stacks of LFEs with
HOU ™= : = - - - - M<15
$ C_— e A . . » » - » . ' M > 2

—=2>Tremor is different from slow slip?
—Slow earthquakes occur on asperities, and we’ve only identified some of them?



What about tremor’s characteristic durations?

Within in the tremor band, duration appears independent of moment (Bostock et al, 2015)

—>Tremor is different from slow slip? —>Slow earthquakes occur on asperities?

identified 0.5-s
long tremor LFEs

unidentified 1-s
| long slip events




s tremor really fast enough to be an earthquake?

Does it rupture at near-shear wave speeds?

LFE durations in Parkfield: 0.2 s (Thomas et al, 2016)

To estimate rupture extent, look for seismic
waves generated at a range of locations

* Inter-station differences visible only at high
% frequencies, at seismic wavelengths shorter
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Inter-station coherence

inter-station coherence
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Allowable diameters and rupture speed
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Option 1: Clusters of brittle failures

slip rate weakening fraction
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—> Stress drops okay, but hard to tune



Mixed frictional weakening and strengthening:

too hard to tune?
earthquakes
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Mixed frictional weakening and strengthening:

too hard to tune?
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Characteristically sized velocity-weakening segment:

too hard to tune? 81 ——
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Slow slip and tremor: 2 processes or 1 continuum?
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Slow slip and tremor in Cascadia

Tremor: numerous small but slow earthquakes

* Mostly 0.5 seconds long, 10 to 100 times longer than |
normal M 1 - 2.5 earthquakes , I §

* Slip rates probably 10“#to 103 m/s
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So which physical processes control these slip rates? I

Boyarko et al, 2015




What limits earthquake slip rates?
Seismic waves
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Do seismic waves limit slow slip slip speeds?

frictional weakening = elastodynamic stress?
stress drop = G V. / V
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No, slow slip is too slow.

But tremor might be fast enough.



strain rate (1072 / yr)

Abundant slow earthquakes

1000

100

10 -




