Observing and modelling the spectrum of a slow slip event A single fault zone process for slow earthquakes?

Jessica Hawthorne (Oxford)

Noel Bartlow (Berkeley)

Tremor migration: Peng and Rubin; VLFEs: Yabe and Ide, 2014

Slow slip in Cascadia

- 1 month long, M 6.5 6.9, about 1 per year
- Slip rates 10⁻⁷ 10⁻⁶ m/s,

100 to 1000 times plate rate

So which fault zone processes control these slip rates?

What could limit slow slip slip rates?

A limit on frictional weakening

from minimum asperity size

Shear-induced fluid pressure drops, via dilatancy or fracture

Shibazaki and Iio, 2003; Hawthorne and Rubin, 2013

Mix of brittle and viscous deformation

Liu and Rubin, 2010; Segall et al, 2010; Moore and Piazolo, in review

Lavier et al, 2013; Fagereng et al, 2014; Behr et al, 2018

Proposed mechanism	Creates slow earthquakes?	Creates abundant events?	
Minimum asperity size Shibazaki and Iio, 2003; Hawthorne and Rubin, 2013	yes	yes	
Brittle and viscous deformation Lavier et al, 2013; Fagereng et al, 2014; Behr et al, 2018;	yes	yes?	
Shear-induced fluid pressure changes Liu and Rubin, 2010; Segall et al, 2010; Moore and Piazolo, in rev.	yes	yes	

Borehole strain-based observations of heterogeneity

Proposed mechanism	Creates slow earthquakes?	Predicts abundant events?	Complexity on simple faults?	
Minimum asperity size Shibazaki and Iio, 2003; Hawthorne and Rubin, 2013	yes	yes	no	
Brittle and viscous deformation Lavier et al, 2013; Fagereng et al, 2014; Behr et al, 2018;	yes	yes?	no?	
Shear-induced fluid pressure changes Liu and Rubin, 2010; Segall et al, 2010; Moore and Piazolo, in rev.	yes	yes	no	

Models appear too stable to allow heterogeneity on simple faults \rightarrow Fault networks are complex

But how can we measure and assess the heterogeneity?

Slow slip: a specific fault zone process Tremor: low-stress drop earthquakes

or

A continuum of slow slip events of different sizes

Where smaller events are faster!?

After Ide et al, 2007; Gao et al, 2012

Could we reproduce this variability with a collection of subevents?

Could we reproduce this variability with a collection of subevents?

Need to choose

- Number of events of each moment
- Relationship: moment ~ duration^m

Modelled moment rate spectrum

How would our geodetic moment rate observations reflect subevents?

Can estimate amplitude of moment rate variability on a range of timescales.

Observed moment rate spectrum

Modelled moment rate spectrum

• Data decays as frequency⁻¹

To match a frequency⁻¹ decay, need m=1, consistent with the proposed continuum scaling

Slow slip and tremor: 1 continuum, 1 physical process?

Moment rate variability *consistent* with a single continuum of slow earthquakes with moment ~ duration

Which processes could produce a continuum where small events are faster?

Proposed mechanism

Minimum asperity size

Shibazaki and Iio, 2003; Hawthorne and Rubin, 2013

Brittle and viscous deformation

Lavier et al, 2013; Fagereng et al, 2014; Behr et al, 2018;

Shear-induced fluid pressure

changes Liu and Rubin, 2010; Segall et al, 2010; Moore and Piazolo, in rev.

Conclusions

Slow earthquakes come in a range of sizes and durations

Moment rate spectra are *consistent* with a single continuum of slow earthquakes

The continuum would

- exclude several physical processes
 - could indicate size-dependent shear zone properties

GPS-based observations of slow slip heterogeneity

slip rate (cm/day)

Proposed mechanism	Creates slow earthquakes?	Predicts abundant events?	Complexity on simple faults?	Size- dependent slip rates?
Minimum asperity size Shibazaki and Iio, 2003; Hawthorne and Rubin, 2013	yes	yes	no	no
Brittle and viscous deformation Lavier et al, 2013; Fagereng et al, 2014; Behr et al, 2018;	yes	yes	no?	via fault viscosity
Shear-induced fluid pressure changes Liu and Rubin, 2010; Segall et al, 2010; Moore and Piazolo, in rev.	yes	yes	no	via fault width
Frictional weakening and strengthening patches Skarbek et al, 2012; Luo and Ampuero, 2017; Yabe et al, 2017	yes	no	no?	via v-s fraction
Size-limited weakening areas? Liu and Rice, 2007; Rubin, 2008; Skarbek et al, 2012	yes	no	no	no
Fluid addition to viscous	yes	yes	??	??

Wech et al, 2009

Slow earthquake complexity: hours-long sub-ruptures

Rupture speeds 10 to 50 times faster than main event

Whole slipping area: small brittle fraction \rightarrow low slip rate Upper half: moderate brittle fraction \rightarrow moderate slip rate Smaller clusters: higher brittle fraction \rightarrow higher slip rate Smallest clusters: highest brittle fraction \rightarrow highest slip rate

Fagereng et al, 2014

 \rightarrow Larger stress drops in smaller, faster events?

But we don't infer high stress drops from strain observations of hours-long RTRs, even though slip rates are 5 times higher

Peng and Rubin, 2016

Option 2: Size-dependent fault properties

Slow slip and tremor in Cascadia

Slow slip: transient aseismic slip

- 1 month long, M 6.5 6.9
- Slip rates 10⁻⁷ 10⁻⁶ m/s, 100 to 1000 times plate rate

What about tremor's characteristic durations?

Within in the tremor band, duration appears independent of moment

 \rightarrow Tremor is different from slow slip?

 \rightarrow Slow earthquakes occur on asperities, and we've only identified some of them?

What about tremor's characteristic durations?

Within in the tremor band, duration appears independent of moment (Bostock et al, 2015)

 \rightarrow Tremor is different from slow slip?

 \rightarrow Slow earthquakes occur on asperities?

Is tremor really fast enough to be an earthquake?

Does it rupture at near-shear wave speeds?

LFE durations in Parkfield: 0.2 s (Thomas et al, 2016)

To estimate rupture extent, look for seismic waves generated at a range of locations

Inter-station differences visible only at high frequencies, at seismic wavelengths shorter

Inter-station coherence

Allowable diameters and rupture speed

 \rightarrow Stress drops okay, but hard to tune

Mixed frictional weakening and strengthening: too hard to tune?

Mixed frictional weakening and strengthening: too hard to tune?

Skarbek et al, 2012

Slow slip and tremor: 2 processes or 1 continuum?

Moment rate variability consistent with a single continuum of slow earthquakes with moment ~ duration

Slow slip and tremor in Cascadia

Tremor: numerous small but slow earthquakes

- Mostly 0.5 seconds long, 10 to 100 times longer than normal M 1 – 2.5 earthquakes
- Slip rates probably 10⁻⁴ to 10⁻³ m/s

So which physical processes control these slip rates?

Boyarko et al, 2015

What limits earthquake slip rates?

Abundant slow earthquakes

