

THE HISTORY OF SEISMIC AND ASEISMIC SLIP AT THE CENTRAL ECUADOR SUBDUCTION ZONE

J.-M. Nocquet

Geoazur, IRD, CNRS, OCA, Univ. Côte d'Azur, & LMI SVAN, IPG Paris

F. Rolandone (Sorbonne Université), M. Vallée (IPG Paris)

Students

J.-C. Villegas-Lanza, P. Jarrin, S. Vaca

<u>LMI SVAN</u>

P. Mothes, A. Alvarado, L. Audin, J. Battaglia, J. Y. Collot, D. Cisneros, M. Chlieh, B. Delouis, Y. Font, R. Grandin, S. Hernandez, M. Plain, M. Régnier, M. Segovia, P. Charvis, H. Tavera, H. Yepes.

THE SEISMIC SEQUENCE

AT THE ECUADOR-COLOMBIA SUBDUCTION ZONE SINCE 1906

Kanamori & Mc Nally (1982), Swenson & Beck (1995)

All large earthquakes of the sequence have been recorded by seismometers

THE PEDERNALES APRIL 16 2016 ECUADOR EARTHQUAKE (Mw 7.8)

Beauval et al., BSSA, 2017

NEAR FIELD HIGH RATE GPS & ACCELEROGRAMS

COSEISMIC STATIC DISPLACEMENT FROM GPS & INSAR

ALOS-2 descending (wrapped) interferogram L-band (24.55 cm) 2016/04/01-2016/04/29

Sentinel-1 descending tracks (unwrapped) interferogram C-banded (5.55 cm) 2016/04/12-2016/04/24

NEAR FIELD HIGH RATE GPS & ACCELEROGRAMS

Nocquet et al., Nat. Geosc., 2017

Pedernales 2016 April 16 Mw 7.8 earthquake

SLIP DISTRIBUTION & INTERSEISMIC COUPLING

POST-EARTHQUAKE GPS TIME SERIES

Mw 6.7 & 6.9 aftershocks

POST-EARTHQUAKE GPS TIME SERIES

TIME DEPENDENT SLIP INVERSION OVER 30 DAYS

Onset of a Slow Slip Event

EARLY AFTERSLIP & AFTERSHOCKS

Seismic/aseismic budget for 1 month:

Total postseismic moment Mw 7.4 30% of the co-seismic moment released

Seismicity accounts for ~10 % of the postseismic deformation

Spatial and temporal correlation aftershocks/aseismic slip

Aftershocks primarily driven by afterslip

Rolandone et al., Sci. Advances, 2018

Two unusual characteristics of afterslip after the Pedernales Earthquake

Pisco Mw 8.0 EQ (Perfettini et al. 2010)

Maule Mw 8.8 EQ (Lin et al., 2013)

SSE north of the Pedernales rupture

Slip kinematic inversion every 3 days and micro-seismicity

November 2013 – January 2014

Vaca et al., Tectonophysics, 2018

Global geodetic moment: Mw ~ 6.3

SEISMIC SWARMS AND REPEATING EARTHQUAKES AT THE SOUTHERN

SHALLOW PATCH

A DEEP SSE

CONCLUSIONS

SSE & (early) afterslip likely obey the same friction law

Spatial & temporal organization of slip modes

Although some of patches appear to be locked during a few years, some of them release stress aseismically while others are seismic

The Ecuador case suggests:

A better anticipation for the location of future large ruptures can be gained by documenting precisely and jointly Interseismic locking and episodic transient slips