

Are geodetic models physically relevant for understanding magma transport processes?

Olivier Galland, Håvard Bertelsen, Frank Guldstrand, Tobias Schmiedel, Benjamin Rogers, Alban Souche, Øystein Haug, Karen Mair

Geodetic surveying and modelling

Bardarbunga – Holuhraun intrusion

Sigmundsson et al. (2015)

Geodetic surveying and modelling

Sigmundsson et al. (2014)

Geodetic model for dykes

Okada (1985): rectangular dislocation in elastic half-space

Main physical assumptions of Okada model

- No tectonic stress: "wrong" boundary conditions
- Pure tensile opening, no propagation, no viscous flow
- Pure elastic deformation of the host rock
 - 1. What are the effects of tectonic stresses?
 - 2. Are other physical assumptions relevant?3. How do they affect dyke-induced surface deformation patterns?

Main physical assumptions of Trippanera et al.

- No tectonic stress: "wrong" boundary conditions
- Pure tensile opening, no propagation, no viscous flow

Coulomb host rock

- Are "injection" plates realistic for emplacing dykes
 How do these assumptions affect surface deformation patterns?
- 3. Do tectonics control observed structures?

Same structures as in tectonic rifts (Holland et al., EPSL, 2006; 2011)

Questions

What is dyke-induced surface deformation outside a tectonic rift?

Does host rock rheology affect dyke-induced surface deformation?

Laboratory modelling of dyke emplacement

3D laboratory experiments: two types of host

4 synchronized cameras

Liquid flow at surface

Gelatine: elastic and incompressible material, tensile opening

Silica flour: cohesive Coulomb material

Both types of experiments produce a vertical dyke

Gelatine elastic experiment

(Bertelsen et al., JVGR, in prep.)

2 topographic bulges + trough parallel to dyke (similar to Okada source)

(Guldstrand et al., JGR, 2017; Bertelsen et al., JVGR, in prep.)

Silica flour Coulomb experiment

(Guldstrand et al., JGR, 2017; Bertelsen et al., JVGR, in prep.)

1 topographic bulge – Only uplift

Differences between elastic and Coulomb experiments

Gelatine: 2 topographic bulges + trough parallel to dyke (similar to Okada source) **Silica flour**: topographic uplift above dyke

 $\Delta DEM [m]$

Emplacement mechanism in the Coulomb crust?

Preliminary conclusions

Different dyke emplacement mechanisms: tensile opening and viscous indenter. Both are supported by field and geophysics (11 extra slides...)

These distinct emplacement mechanisms trigger drastically distinct surface deformation patterns

Differences between sandbox models

Same stress boundary conditions

Same Coulomb host rock

Different "dykes"

Implementation of dyke emplacement mechanism is crucial for interpreting geodetic signals!

Main conclusions

Dyke emplacement mechanism matters in geodetic models!

Physically relevant geodetic modelling requires solid understanting of the physics of dyke emplacement

Very distinct models trigger similar surface deformation: data interpretation/fit is not unique!

This implies that good data fitting does not mean that the physics is understood

Are geodetic models physically relevant for understanding magma transport processes?

Thanks for your attention **Questions?**

2D laboratory experiments

Abdelmalak et al., EPSL (2012)

Emplacement mechanism in the Coulomb crust?

Neuquén Basin, Argentina

- Several sills and tips cropping out very well
- Finely layered host rock formations
- Detailed mapping of sill tips and host rock deformation

Neuquén Basin, Argentina

- Several sills and tips cropping out very well
- Finely layered host rock formations
- Detailed mapping of sill tips and host rock deformation

Dyke-induced reverse faults

(Gudmundsson et al., 2008)

- Steep reverse fault coeval with dyke emplacement
- Fault-dyke relation is matching very well our modelling results

Dyke-induced reverse faults

(Trippanera et al., 2014)

(Agustsdottir et al., GRL, 2015)

Bárðarbunga Holuhraun

Most earthquakes were left-lateral

Dyke opening was interpreted as non-seismic

(Agustsdottir et al., GRL, 2015)

Askja Volcano Iceland

(a) Looking along dyke strike 13 14 -15 -Depth (km) 16 -17· ____SILL? 18 -19 Horizontal distance in dip direction (km)

Focal mechanisms: shear parallel to dyke

(White et al., EPSL, 2011)

- Dyke tip pushes ahead
- Solidifies blocks of magma are remobilized

(White et al., EPSL, 2011)