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Geodetic surveying and modelling
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Geodetic surveying and modelling
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Geodetic model for dykes
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& Okada (1985): rectangular dislocation in elastic half-space



Main physical assumptions of Okada model
& No tectonic stress: "wrong” boundary conditions
& Pure tensile opening, no propagation, no viscous flow

& Pure elastic deformation of the host rock

1. What are the effects of tectonic stresses?
2. Are other physical assumptions relevant?

3. How do they affect dyke-induced surface
deformation patterns?



Sandbox geodesy
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Main physical assumptions of Trippanera et al.

& No tectonic stress: "wrong” boundary conditions
& Pure tensile opening, no propagation, no viscous flow

& Coulomb host rock

1. Are “injection” plates realistic for emplacing dykes

2. How do these assumptions affect surface
deformation patterns?

3. Do tectonics control observed structures?



Same structures as In tectonic rifts (Holland et al., EPSL, 2006: 2011)

S= Large open mode-| fractures
gj on footwall surface
Subvertical scarps are jagged,
reflecting the pattern of the
initial thermal contraction joints

fractures exploit pre-existing weaknesses
like cooling-cracks and bedding

Open fissures at the base of a
scarp contain large
/ angular boulders

. & What are the relatlve contrlbutlons of
=== dykes vs. tectonics on geodetic signals =
and observed structures In rifts? S rtr e

the scarp

Syntectonic lava flows
support the concept of
volcanic growth faults.

At depth, talus blocks
within a fault are crushed

Subaerial as well as subaqueous
lava flows are layered and develop
cooling cracks: both weaknesses
influence the bulk mechanical
behaviour of the rock
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Questions

& What is dyke-induced surface deformation outside a tectonic
rift?

& Does host rock rheology affect dyke-induced surface
deformation?

Laboratory modelling of dyke emplacement




3D laboratory experiments: two types of host

4 synchronized cameras ) )
& Gelatine: elastic and
Q - g incompressible material,
tensile opening

Liquid flow at surface

& Silica flour: cohesive
Coulomb material

& Both types of experiments
produce a vertical dyke
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Gelatine elastic experiment (Bertelsen et al., JVGR, in prep.)
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Silica flour Coulomb experiment (Guldstrand et al., JGR, 2017;
Bertelsen et al., JVGR, in prep.)
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Differences between elastic and Coulomb experiments
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Gelatine: 2 topographic bulges + Silica flour: topographic uplift

trough parallel to dyke above dyke
(similar to Okada source)




Emplacement mechanism in the Coulomb crust?
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Preliminary conclusions

& Different dyke emplacement mechanisms: tensile opening
and viscous indenter. Both are supported by field and
geophysics (11 extra slides...)

& These distinct emplacement mechanisms trigger drastically
distinct surface deformation patterns



Differences between sandbox models
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(Trippanera et al., 2014; 2015) (Galland et al., 2016)

& Implementation of dyke emplacement mechanism is crucial
for interpreting geodetic signals!



Main conclusions

& Dyke emplacement mechanism matters in geodetic models!

& Physically relevant geodetic modelling requires solid
understanting of the physics of dyke emplacement

& Very distinct models trigger similar surface deformation: data
Interpretation/fit is not unique!

& This implies that good data fitting does not mean that the
physics is understood

Are geodetic models physically relevant for
understanding magma transport processes?
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2D laboratory experiments Abdelmalak et al., EPSL (2012)




Emplacement mechanism in the Coulomb crust?
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Neuquen Basin, Argentina (Spacapan et al., JGS, 2016)

& Several sills and tips cropping out very well

& Finely layered host rock formations

& Detailed mapping of sill tips and host rock deformation
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Neuquen Basin, Argentina (Spacapan et al., JGS, 2016)

& Several sills and tips cropping out very well

& Finely layered host rock formations

& Detailed mapping of sill tips and host rock deformation
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Dyke-induced reverse faults (Gudmundsson et al., 2008)
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& Steep reverse fault coeval with dyke emplacement

& Fault-dyke relation is matching very well our modelling
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Dyke-induced reverse faults (Trippanera et al., 2014)
i




Dyke-induced shear failure (Agustsdottir et al., GRL, 2015)
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Dyke-induced shear failure

Bardarbunga
Holuhraun

& Most earthquakes
were left-lateral

& Dyke opening
was interpreted as
non-seismic

(Agustsdottir et al., GRL, 2015)
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Dyke-induced shear failure
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Dyke-induced shear failure
(a) Looking along dyke strike
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Dyke-induced shear failure

& Dyke tip pushes ahead

& Solidifies blocks of
magma are remobilized

(White et al., EPSL, 2011)




