

Post-eruptive thermoelastic deflation of intruded magma in Usu volcano, Japan, 1992–2017

Xiaowen Wang, Yosuke Aoki

Earthquake Research Institute, The University of Tokyo

Key Points:

- InSAR shows three localized deformation regions
- Thermoelastic modeling reveals four shallow sources
- The modeling favors high thermal diffusivity

Volcano deflation

Volcano deflation

Possible mechanisms for continuing post-eruptive subsidence:

- ✓ Viscoelastic relaxation (Galgana et al., 2014; Segall, 2016; Fujiwara et al., 2018; Yamasaki et al., 2018);
- ✓ Cooling of lava/magma (Furuya 2005; Parker et al., 2014; Chaussard 2014);
- ✓ Pore pressure decrease (*Lu et al., 2002; Wauthier et al., 2018*);
- ✓ Degassing (Wauthier et al., 2018);
- ✓ Tectonic extension (*Parker et al., 2014*);

Monitoring and interpreting volcano deflation may provide insights into underground magma process and rheology of host rock.

Usu volcano (Hokkaido, Japan)

Showa-Shinzan, a lava dome emerged during the 1943—1945 eruption.

The 2000 phreatomagmatic eruption of Usu volcano

Usu volcano: our motivation

NC: Nishiyama Crater; KC: Konpirayama Crater;

MS: Meiji-Shinzan; SS: Showa-Shinzan; KO: Ko-Usu; US: Usu-Shinzan; OU: O-Usu;

- ✓ Secular subsidence has been reported since 1960s;
- ✓ The mechanism of subsidence has not been well understood;
- ✓ We attempt to investigate the posteruptive deformation using InSAR;

SAR data

SAR sensor	JERS-1 (1992-1998)	ALOS-1 P (2006-	ALSAR-1 -2011)	ALOS-2 PALSAR-2 (2014-2017)		
Path No.	Path 65, Desc.	Path 401, Asc.	Path 58, Desc.	Path 124, Asc.	Path 19, Desc.	
Image Num.	46	20	22	11	12	
Interf. Num.	76	72	79	55	66	
Interf. Num. for Stacking/SBAS	53	25	54	50	57	
Range (m) × Azimuth (m)	8.8 × 4.5	4.7 × 3.1		1.4×1.8		

SAR data processing

- ✓ Used the GAMMA software to process the SAR images and generate more than 200 interferograms;
- ✓ Applied the stacking method
 (Sandwell, 1998) to the JERS data;
- ✓ Applied the Small Baseline Subset method (*Berardino et al., 2001*) to the ALOS-1/2 data;
- ✓ Decomposed the LOS displacements into quasi- vertical and E-W directions.

Results: mean LOS velocity

✓ 2000 site:

- Two sub-regions: NC and KC craters;
- Maximum ALOS-1 velocity: 38 mm/yr;
- Nearly disappear in ALOS-2 measurements;
- ✓ 1977 site:
- Has the largest deformation extent;
- Maximum velocities: 66, 45 and 43 mm/yr for the JERS, ALOS-1 and ALOS-2, respectively;
- ✓ 1943 site:
- Steady pattern of deformation;
- LOS velocity : ~ 20 mm/yr.

Results: quasi- E-W and U-D mean velocity

- All the three deformation
 sites show E-W contraction
 and vertical subsidence;
- Both the E-W and U-D
 deformation regions have
 shrank from 2006 to 2017;
- Maximum subsidence rate :
 - ~ 40 mm/yr at the 1977
- eruption site;

Results: displacement temporal evolution

Subsidence rates at the three points

Points	JERS (mm/yr)	ALOS-1 (mm/yr)	ALOS-2 (mm/yr)
P ₂₀₀₀	-	-22	-6
P ₁₉₇₇	-68	-27	- 24
P ₁₉₄₃	-18	-16	-15

- ✓ The 2000 vent: Drastic decline in subsidence rate.
- ✓ The 1977 vent: Gradual decline of subsidence.
- ✓ The 1943 vent: Steady subsidence.

Cooling of intruded magma?

- Localized deformation at vents;
- Deformation area shrinks over time;
- Temporal decay in subsidence rate;

Thermoelastic modeling

Assuming the deformation is caused by an instantaneous spherical heat source in an elastic half–space (*Furuya, 2004; 2005*), the displacement u at the ground point x and the time t can be expressed as :

$$\boldsymbol{u}(x, t) = \boldsymbol{f}(x, t, V, \boldsymbol{d}, T, a, k, v)$$

V: source volume ;

d: depth of the source;

T: magma temperature (1200 K);

a: thermal expansivity (2×10^{-5});

k: thermal diffusivity;

v: poisson ratio (0.25);

Thermoelastic modeling

- C *m + c	<i>m</i> : source parameters (<i>lon, lat, d, V, k</i>)		
u = 0 m + c	<i>d</i> : mean LOS or vertical velocities		
$-\sqrt{rT}C^{-1}r/(n-n)$	G : Green function from the model		
$-\sqrt{r} \cdot \mathbf{C} - r/(n-p)$	ε: model residual		
= d - f(m)	C: weighting matrix		
	<i>n</i> : number of observations in <i>d</i>		
	<i>p</i> : number of source parameters		
	$= \mathbf{G}^* \mathbf{m} + \varepsilon$ $= \sqrt{\mathbf{r}^T \mathbf{C}^{-1} \mathbf{r} / (n - p)}$ $= \mathbf{d} - \mathbf{f}(\mathbf{m})$		

- We assumed four heat sources and used the mean velocities to constrain the parameters;
- Each dataset was weighted by its observation time-span;

Table below: best fitting model parameters with their 2σ uncertainties.

	Longitude (°)	Latitude (°)	Depth (m b.s.l)	Volume (×10 ⁶ m ³)	Thermal diffusivity (×10 ⁻⁵ m²/s)	Misfit	Data source
2000 site	140.8034	42.5541	213±19	6.67±0.21	8.21±1.01	2.78	ALOS-1 (NC)
	140.8118	42.5563	100±13	2.05±0.13	8.06±1.20	2.02	ALOS-1 (KC)
1977 site	140.8353	42.5416	396±29	132.18±5.21	10.05±1.09	5.06	JERS+ALOS-1+ALOS-2
1943 site	140.8662	42.5426	92±12	49.51±2.12	1.65±0.22	1.03	JERS+ALOS-1+ALOS-2

✓ Four shallow heat sources in depths not deeper than 400 m (b.s.l.);

- ✓ Radii for the four heat sources are 117, 79, 316, and 228 m, respectively;
- ✓ Thermal diffusivity is much higher than the empirical value $(0.1-1\times10^{-5} \text{ m}^2/\text{s})$;

Model evaluation

- ✓ Maximum RMS of the residuals for the 2000, 1977 and 1943 sites are 4.17, 6.98, and 3.22 mm/yr, respectively;
- ✓ The thermoelastic models successfully explain the observed post-eruptive deformation;

1943 vent

Temporal evolution of vertical displacements : Point P₁₉₄₃

Temporal evolution of vertical displacements : Point P₁₉₇₇

Time (year)

Temporal evolution of vertical displacements : Point P₂₀₀₀

Comparison with resistivity structure

Magnetotelluric (MT) surveying

Showa-Shinzan Dome

The 1977 vent (Matsushima et al., 2002; Matsushima, 2003)

The 1943 vent (Goto & Johmori, 2014)

✓ Our modeling results:

- High apparent thermal diffusivity (10⁻⁴~10⁻⁵ m²/s), which are 1–2 orders higher than laboratory derived values;
- If we fix the thermal diffusivity with 1×10⁻⁶ m²/s, the best-fitting depth and volume for the 1977: 1040 m b.s.l. and 10.42 km³, respectively.

✓ Factors influencing thermal diffusivity:

- Rock temperature Degree of water saturation
- Pressure

• Porosity

Lab experiments shown that thermal diffusivity may vary **as much as a factor of two to three** by changing the values of these factors (*Clauser and Huenges, 2013*).

High thermal diffusivity?

Groundwater may play an important role in influencing the cooling process :

- Toya lake is right next to the volcano;
- Planetary earthquake swarms would generate rich fractures/faults (Jousset, 1999);
- The presence of high permeable rock (*Matsushima*, 2003);
- Decrease of water level after the eruptions.

Conclusions

- ✓ 25 years of InSAR observations at Usu volcano show three deformation regions corresponding to the 2000, 1977 and 1943 eruption sites, respectively;
- Temporal evolutions of subsidence at the three eruption sites are different from each other;
- ✓ Thermoelastic modeling reveal four shallow heat sources at <400 m below sea level;
- ✓ The underground water flow may play an important role in effectively cooling the volcano.

Thank you for your attention! Email: insarwxw@eri.u-tokyo.ac.jp