

Analysis of the pre-eruptive ground deformation signals of the 2017 eruption of Agung volcano Insights from InSAR Sentinel-1 time series and 3D numerical modelling

> Fabien Albino, Juliet Biggs University of Bristol - COMET

D. K. Syahbana (CVGHM) M. Poland (USGS-VDAP) C. Yu & Z. Li (Newcastle)

F. Albino - fa17101@bristol.ac.uk

K.PARWATA

Magmatic systems beneath arc-volcanoes

Magmatic systems beneath arc-volcanoes

Can we use Agung 2017 eruption to learn about magmatic systems below arc-volcanoes ?

- To identify ground deformation signals
 InSAR techniques (Sentinel-1 data)
- To constrain the location and orientation of magmatic sources FEM modelling (ground deformation and stress)
- To build a conceptual model for the 2017 eruption
 Historical observations
 Geodesy/Seismology Degassing Geochemistry/Petrology

Context

The 1963 eruption

- Agung eruption (VEI 5): February 18
- Batur eruption: September 5
- Petrology similar between erupted products
- Mixing between basaltic and andesitic magmas

2017: Timeline of unrest (from ground observations)

InSAR principles

 $\varphi_{int} = \varphi_f + \varphi_{topo} + \varphi_{displ} + \varphi_{atm} + \varphi_{err}$ $\varphi_f \quad \text{flat Earth}$ $\varphi_{topo} \quad \text{topographic phase}$ $\varphi_{displ} \quad \text{deformation phase}$ $\varphi_{atm} \quad \text{atmospheric phase}$

 φ_{err} noise (error phase)

bristol.ac.uk

InSAR principles

Challenge of InSAR in tropical volcanoes

Challenge of InSAR in tropical volcanoes

12-days Sentinel Interferograms 18 Sept – 30 Sept 2017

- Good coherence
- Several fringes on Agung summit

bristol.ac.uk

Correction of atmospheric phase delays

GACOS Atmospheric corrections <u>http://ceg-</u> research.ncl.ac.uk/v2/gacos/

 ECMWF weather model (0.125^o and 6h)

bristol.ac.uk

SRTM DEM (90 m)

Thursday keynote – *Zhenhong Li* GACOS-Assisted InSAR Time Series Technique

Correction of atmospheric phase delays

Open-access data are great!!! But we need to be responsible with it.

- Diffusion of wrong information during the seismic crisis (social media)
- Need to develop/improve path of communication from the community to the public

InSAR stacking

Period I: From mid April to August 1st

bristol.ac.uk

No significant ground deformation

InSAR stacking

Period I: From mid April to August 1st

No significant ground deformation

Period II: August 1st to November 21st

Wide uplift (8-10 cm) in the northern flank of Agung

Timeline of unrest (seismicity + InSAR)

F. Albino - fa17101@bristol.ac.uk

Offset of seismicity

F. Albino - fa17101@bristol.ac.uk

FEM modelling (COMSOL) 3D Topography

Magma Intrusion (8 parameters)

F. Albino - fa17101@bristol.ac.uk

Modelling of the large uplift signal

F. Albino - fa17101@bristol.ac.uk

Inversion: Monte-Carlo + Nelder-Mead

$\Delta V = 47.6 \times 10^6 \text{ m}^3 (\pm 3.6)$

F. Albino - fa17101@bristol.ac.uk

Modelling of the small summit signal

bristol.ac.uk

Dyke Opening along σ_3 (azimuth 39°) Propagation along σ_1 (plunge 63°)

Hyp. 1 Tectonic stress around Bali

World Stress Map, 2016

Dyke σ_3 azimuth: 39° σ_1 plunge: 63°

Hyp. 1 Tectonic stress around Bali

 σ_3 azimuth: 103-171° σ_1 plunge: 7-18°

Dyke σ_3 azimuth: 39° σ_1 plunge: 63°

Hyp. 2 Topographic loading stress

bristol.ac.uk

Dyke σ_3 azimuth: 39° σ_1 plunge: 63°

Hyp. 2 Topographic loading stress

 σ_3 azimuth: 35° σ_1 plunge: 80°

What did we learn?

- How magma is transferred below Agung before the eruption ?
 A deep and large dyke intrusion located midway between Agung and Batur
- Which mechanism is controlling the propagation of the magma ? Not regional stresses. But local stress induced by the loading of the volcanic edifices.

This is the first geodetic evidence of a magmatic connection between the two volcanoes.

These results have a strong implication to understand how simultaneous eruptions occurred at Agung and Batur (e.g. 1963).

Conceptual model of Agung magmatic system

Albino et al., 2018 (in review) [geodesy] Geiger et al., 2018 [thermo-barometry] Fontijn et al., 2015 [petrology]

(1) Sept. - Oct. 2017 Magma transfer from deep source (15-20 km)

Ground uplift- Seismic swarm

(2) Mid-October 2017

Arrest of magma vertical propagation (5-7 km) Small deformation - Drop of seismicity

(3) November 2017

Mixing between intrusion and shallow source Increase of degassing (SO_2) P^o of the hydrothermal system

bristol.ac.uk

(4) 21st November ERUPTION

Dyke intrusion between neighbouring arc volcanoes responsible for 2017 pre-eruptive seismic swarm at Agung, Bali

> F. Albino, J. Biggs and D. K. Syahbana in review, Nature Communications

fa17101@bristol.ac.uk

@FabienAlbino

Time-step inversion

19 March 2018

bristol.ac.uk

Volume history

19 March 2018

Full time series

F. Albino - fa17101@bristol.ac.uk

Trade-off between parameters

F. Albino - fa17101@bristol.ac.uk