Seismogenesis of dual subdution beneath Kanto, central Japan controlled by fluid release

Yingfeng JI¹, <u>Shoichi YOSHIOKA^{1,2}</u>, Vlad C. MANEA³ and Marina MANEA³

1 RCUSS, Kobe University, Japan

2 Graduate School of Science, Kobe University, Japan

3 UNAM, Mexico

Tectonic map

Plate geometry model

Seismogenic zone in and around the PAC slab interface

- To understand the effect of existence of the PHS slab on geodynamic process beneath Kanto, central Japan (thermal structure, dehydration, and mantle flow)
- To elucidate seismogenesis of inter- and intraplate earthquakes (≧M2) of the PAC slab, especially deepening of the seismogenic zone at the down-dip side of the slab-slab contact zone

Previous study

- 2-D model Iwamori (EPSL, 2000) Yoshioka et al. (GJI, 2015)
- 3-D model

Iwamori (EPSL, 2000)

Wada and He (GRL, 2017)

What's new ?

- 3-D
- time dependent
- subduction history
- a moving prescribed guide
- high-density heat flow data
- relationship between dehydration and inter-& intra-plate seismicity of the PAC slab, using phase diagrams of hydrous minerals

Geometry of the upper surfaces of the **Pacific and the Philippine Sea** slabs

Nakajima and Hasegawa (2006, 2009) Kita et al. (2010)

Phase diagram of water content for hydrous minerals included in a slab

Distributions of temperature and water content on the upper surfaces of the slabs beneath Kanto

Thermal structure on the upper surface of the slabs and flow pattern in the mantle wedge beneath Kanto

Distributions of temperature and water content in the Pacific slab different at depths beneath Kanto

Conclusions

- Constructed 3-D high-resolution thermal structure model associated with dual subduction beneath Kanto.
- Seismicity in the oceanic crust in the PAC slab (at depths of about 40 km) corresponds well to dehydrated area associated with the phase transformation.
- The effect of existence of the PHS slab on distributions of temperature, dehydration, and seismicity in the PAC slab
 - \rightarrow Temperature decreases at the slab-slab contact zone
 - → Water is carried to the deeper portion there in a form of OH group due to delay of phase transformations
 - → Water released area at the deeper portion of the contact zone coincides well with intraslab deep seismicity

Thank you for your attention

SECONDER

This presentation is based on Ji et al., Scientific Reports, 7, 16864 (2017)

Method

Governing equations for 3-D parallelepiped thermal convection model

Mass conservation $\nabla \cdot [\rho_s(z)\mathbf{v}] = 0$ anelastic liquid approximation Momentum equation $-\frac{\partial P}{\partial x_{i}} + \frac{\partial \tau_{ij}}{\partial x_{i}} + \delta_{i3}\rho_{s}g\alpha_{0}(T - T_{s}) = 0$ Energy equation $\rho c_p (\frac{\partial T}{\partial t} + v \cdot \nabla T) = k \nabla^2 T + \eta (\nabla v)^2 + \rho g a T v + H_r \rho + \tau \dot{\varepsilon}$ advecti conducti viscous adiabatic radioac frictional dissipati heating tive on heating on on heating on the Viscosity plate $\eta = \frac{\eta_{diff} \eta_{disl}}{\eta_{diff} + \eta_{disl}} \qquad \eta_{diff,disl} = \left(\frac{d^{p}}{AC_{OU}^{r}}\right)^{\frac{1}{n}} \exp\left[\frac{E + P_{lc}V}{nRT}\right]^{\frac{1}{n}} \text{Burkett and Billen (2010)}$

Age of the **Pacific and** the Philippine **Sea plates**

Subduction history of the Pacific and the Philippine Sea plates from 20 Ma to the present

Hall et al. (1995); Faccenna et al. (2017)

Heat flow distribution

Yoshioka et al. (2015)

Parameters in our 3D Modeling

Symbol	Parameters	Value	Units
$ ho_0$	Standard density	3300(1)	kg/m^3
T_0	Temperature difference between top and bottom of model	1600	K
k_0	Standard thermal conductivity	2.9(3)	<i>w</i> / <i>mK</i>
Hr	Radioactive heat generation rate in the mantle	2.245×10^{-13}	w/m^3
C_{p_0}	Standard specific heat at constant pressure	1200 (1)	J / kgK
ĸ ₀	Standard thermal diffusivity	7.6×10^{-7} (4)	m^2/s
η o	Standard viscosity	10^{20} (3)	$Pa \cdot s$
$lpha_0$	Standard thermal expansion	3×10 ⁻⁵ (2)	/ <i>K</i>
v ₁	Straight subduction velocity	4.0(1)	cm/ yr
v_2	Oblique subduction velocity	6.3(5)	cm/ yr

(1) Wang et al. (1995) (2) Iwamori (1997) (3) Christensen (1996) (4) Yoshioka & Murakami. (2007) (5) Sella et al (2002)

Geological unit	Thermal conductivity Wm ⁻¹ k ⁻¹	Heat production (W k ⁻¹)	Density (kg m ⁻³)
Upper crust (0–16 km)	2.5 ^a	7.3×10^{-10a}	2600 ^a
Lower crust (16-32 km)	2.5^{a}	1.4×10^{-10a}	2900 ^a
Mantle and oceanic plate	2.5	2.245×10^{-13a}	3300 ^a
Accretionary prism	1.4^{b}	7.3×10^{-10a}	2600 ^a
^a Wang et al. (1995).			
^b Ashi et al. (2002).			

Table 1. Thermal properties used for the temperature calculations.

$$\eta_{comp} = \frac{\eta_{df} \eta_{ds}}{\eta_{df} + \eta_{ds}}.$$

$$\eta_{df,ds} = \left(\frac{d^{p}}{A_{0}C_{OH}^{r}}\right)^{\frac{1}{n}} \dot{\varepsilon}_{E}^{\frac{1-n}{n}} \exp\left(\frac{E_{0} + P_{l}V_{0}}{n_{0}RT_{a}}\right),$$

1

	Flow law parameters				
	Parameter	Diffusion creep	Dislocation creep		
n_0	Stress exponent	1.0	3.5		
A_0	Preexponential factor (s ⁻ⁿ Pa ⁻ⁿ µm ^p H ^{-r} 10 ^{6r} Si ^r)	1.0	9.0×10 ⁻²⁰		
E_0	Activiation energy (kJ/mol)	335	480		
V_0	Activiation volume (m ³ /mol)				
	Upper mantle	4.0×10 ⁶	11.0×10 ⁶		
	Lower mantle	1.5×10^{-6}	-		
d	Grain size (µm)				
	Upper mantle	10,000	-		
	Lower mantle	40,000			
р	Grain size exponent	3.0	-		
Сон	OH concertration (H/10 ⁶ Si)	1000	1000		
r	C _{OH} exponent	1.0	1.2		

<u>Model parameters</u> for the diffusion and dislocation creep of olivine (Armienti and Tarquini, 2002; Hirth and Kohlstedt, 2003; Burkett and Billen, 2010)

The model parameters (Table 2) were tested for sensitivity by changing them by ± 5 per cent, and changes in the 150, 350 and 450 °C isotherm locations were determined (Fig. 10). A change of ± 65 °C in ΔT , which contributes to Ra_0 , ξ and Rh_0 , changed the average locations of the eight profiles by $\pm 2, \pm 9$ and ± 12 km, respectively. Changing mantle thermal diffusivity, defined by ρ, k and Cp, by $\pm 3.2 \times 10^{-8}$ m² s⁻¹ moved the average locations by ± 1 , ± 4 and ± 3 km, respectively. Changes in D, Rh_{mantle} and α_0 , which also affect Di_0 , Γ_0 and ξ , had negligible effects on the average locations. If the continental Moho depth was 30 km, which was 2 km shallower than the depth used in this model, the average locations would change by $\pm 0, \pm 0$ and ± 3 km, respectively. We used

Temperature and H₂O variations for mantle density variation of -50 kg/m³ (mantle density of 3250 kg/m³)

 $(\Delta T^{\circ}C)$

 $(\Delta H_2 O wt.\%)$

5.00

Temperature and H₂O variations for mantle density variation of +50 kg/m³ (mantle density of 3350 kg/m^3)

temperature variation

(AH2O wt.%)

 $(\Delta T^{\circ}C)$

Temperature and H₂O variations for mantle viscosity variation of -0.1x10²⁰ Pa S (mantle viscosity of 0.9x10²⁰ Pa s)

temperature variation

8.00

Temperature and $H_{2}O$ variations for mantle viscosity variation of +0.1x10²⁰ Pa S (mantle viscosity of 1.1×10^{20} Pa s)

temperature variation

H₂O variation

 $(\Delta T^{\circ}C)$

 $(\Delta H_{\circ}O wt.\%)$

Tectonic map (1)

Study area

Philippine Sea Plate

PP

PSP

Pacific Plate

Previous study (1)

2-D model

Iwamori (EPSL, 2000) Yoshioka et al. (GJI, 2015)

• 3-D model

Wada and He (GRL, 2017)

Wada and He (GRL, 2017)

Previous study (2)

Previous study (3)

Necessary data for model construction

- Slab geometry
- Age of the oceanic plates at the Trench or Trough
- Subduction history
- Heat flow

Tectonic map (1)

Objectives

- To understand geodynamic process associated with subduction of two oceanic plates beneath Kanto, using 3-D thermal convection subduction model
 - Thermal structure associated with subduction of plates with 3-D complex geometry
 - Spatial distributions of maximum solubility and dehydration
 - Mantle flow in the mantle wedge

To elucidate seismogenesis of inter- and intraplate earthquakes (≧M2) beneath Kanto

Plate geometry model and distribution of interplate microearthquakes in the study area

