Piton de la Fournaise Flank Displacement following the March 2007 eruption

Valerie Cayol^{1,2}, Marine Tridon¹, Jean-Luc Froger¹, Keith Richards-Dinger^{3,} Jim Dieterich³, Aurelien Augier1

 Laboratoire Magmas et Volcans, CNRS, Clermont-Ferrand, France
 Laboratoire Magmas et Volcans, CNRS, Saint-Etienne University, France
 Department of Earth Sciences, University of California, Riverside, U.S.A.

Marine Tridon, la Réunion, Oct. 2014

Wegener conference, Grenoble, 2018

The 2007 eruption of Piton de la Fournaise volcano

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

A very active volcano: 43 eruptions, >24 failed eruptions since 1998

La Réunion Island

Alternation of repeating patterns and Flank displacement Poster of Dumont et al., today 16:00-18:30

c. NS-EW summit alternation

The 2007 eruption of Piton de la Fournaise volcano

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Complex CO-eruptive displacement

Simpler POST-eruptive displacement

Interpolated interferograms (Apr 07 to July 08)

(Froger et al., JVGR, 2015)

Simpler POST-eruptive displacement: still on going

(Chen et al., Remote sensing of Environment, 2017)

Flank displacement at Piton de la Fournaise

Which type of fracture ?

Inversion of geometry and stress changes

(Fukushima et al., JGR, 2005)

Model : Mixed Boundary Element Method (Cayol et Cornet, JGR, 1998; Cayol et al., JGR, 2014)

- linear elastic medium
 homogeneous and isotropic edifice
- realistic topography
 Possibility to prevent interpenetration of fracture sides

8 to 17 geometrical parameters + Normal and shear stress changes on a circular patch

Non-linear inversions: Neighborhood Algorithm (Sambridge, 1999a)

Misfit function: $\chi^2 = (u_o - u_m)^T C_d^{-1} (u_o - u_m)$

Voronoi cell (= neighbourhood)

- Closing fracture ;
- Shallow and subparallel to the topography → lithological discontinuity;

Mechanism for the post-eruptive closure ?

Thermal contraction of a sill after its emplacement ?

• Which thickness ?

20 days incompatible with the duration of the displacement

Co-eruptive vertical displacement

0.4

0.2

-0.2

-0.4

0

Most likely model for the CO-eruptive period

A fault

- The uplift is associated to a shears stress drop and a null overpressure
- If there was magma there should be an overpressure as $\rho_{magma} > \rho_{lava flows}$
- The post-eruptive deflation is not explained by thermal contraction of magma
- Uplift (buckling of the plate) A detachment fold

Most likely model for the CO-eruptive period

- The seismic moment corresponds to Mw = 4.2
- Duration of 4 days

(Ide et al., Nature, 2007)

A slow EQ

Link between the CO and POST-eruptive periods

- Same surface for the post and co eruptive fracture
 → Same fracture
- The post eruptive fracture has a larger surface than the co-eruptive fracture

The co-eruptive fault failed in a SSE and the rest of the fault creeps

Rate and state friction for Piton de la Fournaise ?

Rate-State Quake Simulator (RSQSim) of Dieterich and Richard-Dinger (PAG, 2010)

 $\mu = \frac{\tau}{\sigma} = \mu_0 + a \ln\left(\frac{\delta}{\delta^*}\right) + b \ln\left(\frac{\theta}{\theta^*}\right)$

Assumption $a_{creep} = a_{sse} = 0.015$ (Blanpied et al., JGR,1995) Parameters are b_{creep} , b_{sse} , μ_0 Inputs to the model :

- co-eruptive slow earthquake surface (b_{sse} - a_{sse})>0
- post-eruptive creep surface (b_{creep}-a_{creep})<0
- stress drop of 0.6 MPa during failure
- Shear and normal stress resulting from weight

Observations used to constrain the model parameters

- No flank failure in the 15 years prior to 2007
- The flank took 4 days to fail
- Creep rate on the creeping fault indicated by InSAR time series of 2cm/year after 2011

Rate and state friction for Piton de la Fournaise ?

Rate-State Quake Simulator (RSQSim) of Dieterich and Richard-Dinger (PAG, 2010)

2817 days

Concluding remarks

- Inversion of normal and shear stress changes associated to the 2007 Piton de la Fournaise Flank displacements
- The co and post eruptive flank displacement are related to a fault displacement rather than a sheared intrusion ;
- The co-eruptive uplift is related to a detachment fold rather than magma ;
- The sudden flank displacement and following creep can be explained by rate and state friction.

Thank you !

Post-eruptive flank models:

Tridon, M., V. Cayol, J–L. Froger, A. Augier, and P. Bachèlery, Inversion of coeval shear and normal stress of Piton de la Fournaise flank displacement, *J. Geophy. Res.:Solid Earth*, doi: 10.1002/2016JB013330, 2016.

3D displacement of the 2007 eruption and caldera collapse:

Froger J.-L., V. Famin V., V. Cayol, A. Augier, L. Michon; J-F Lénat, Time-dependent displacements during and after the April 2007 eruption of Piton de la Fournaise, revealed by interferometric data, *J. Volcanol. Geotherm. Res.*, **296**, p.55-68, doi:10.1016/j.jvolgeores.2015.02.014, 2015.

Boundary element with no interpenetrations of fractures:

Cayol V., T. Catry, L. Michon, M. Chaput, V. Famin, O. Bodart, J. L. Froger, C. Romagnoli, Sheared sheet intrusions as mechanism for lateral flank displacement on basaltic volcanoes: Application to Réunion Island volcanoes, *J. Geophys. Res.*, **119**, doi:10.1002/2014JB011139, 2014

Rate and state friction for Piton de la Fournaise ?

Represented as

$$\mu = \frac{\tau}{\sigma} = \mu_0 + a \ln\left(\frac{\delta}{\delta^*}\right) + b \ln\left(\frac{\theta}{\theta^*}\right) \quad \text{with state variable} \quad \theta = f(t, \delta, \sigma)$$

Accounts for :

• Time dependent strengthening

• Evolution of friction with slip rate

(Dieterich and Kilgore, PAGEOPH, 1994)

Detachment folds

Piton de la Fournaise 2007 Flank displacement

 $-3\pi/2$

General conceptual model: a sliding rug

Geological evidence

Seismic cross-section of a detachment fold Along the North sea (Contreras, JSGeol, 2010)

 $\pi/2$

 $3\pi/2$

Rate and state friction for Piton de la Fournaise ?

Rate-State Quake Simulator (RSQSim) of Dieterich and Richard-Dinger (PAG, 2010)

Link with intrusions

triggered by stress build up from previous shallow intrusions

Complex CO-eruptive displacement

Most likely model for the POST-eruptive period Most likely = lowest AIC = $2^{k} + \chi^{2} + cst$ with k = number of parameters and χ^{2} = misfit

Most likely model for the CO-eruptive period

Most likely = lowest AIC = $2^{k} + \chi^{2} + cst$ with k = number of parameters and χ^{2} = misfit

Simpler POST-eruptive displacement: still going on

(Chen et al., Remote sensing of Environment, 2017)

Denser intrusions than lava flows

• Geological and geophysical studies at this volcano and others

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, B05407, doi:10.1029/2007JB005084, 2008

Insights on the March 1998 eruption at Piton de la Fournaise volcano (La Réunion) from microgravity monitoring

Sylvain Bonvalot,^{1,2} Dominique Remy,^{1,2} Christine Deplus,³ Michel Diament,³ and Germinal Gabalda¹

Dikes are much denser than lava flows

• At 400 m depth, magma is expected to have very little vesiculation (Di muro, Personnal communication) \rightarrow dense magma

Flank displacements

0.065

0.01

-0.085

-0.16

0.4

0.2

-0.2

-0.4

b

Late CO

0

35 cm

Early CO

0.10

-0.10

-0.20

-0.30

0

-30 cm/15 months

POST eruptive displacement

(Froger et al., JVGR, 2015)

(Froger et al., JVGR, 2015)

Stress versus displacement boundary conditions

Stress boundary conditions models are closer to the physics

Flank failures

Largest 100 km³ Oldest 2 My

Oehler et al., JVGR, 2008

Stres ruptions on the

References

Cayol, V., and F.H. Cornet , JGR, 103, 1998. Cayol, V., et al., JGR, 119, 2014. Famin and Michon, Geology, 2010. Fukushima, Y., et al., JGR, 110, 2005. Froger J.-L., et al., JVGR, 296, 2015. Peltier A., P. et al., JVGR, 184, 2009. Sambridge, M., GJI, 138, 479-494. Tridon, M., et al., JGR, 2016.